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The subject of this paper is the saturation current to an electric probe washed by a stream of moderately
ionized plasma with low Reynolds number of the incident flow. It is known that the problem of determining the
saturation current reduces to calculating the quasineutral molar concentration of charged particles [1].

A formula has been obtained for the saturation current to a spherical probe, allowing for the plasma being
nonisothermal and having variable transport properties. To solve this problem in the limit of low Reynolds num-
ber of the incident plasma.stream we use the method of matched asymptotic expansions. This method was used
in [2, 3] to find an expression for the flux of particles diffusing to a body of arbitrary shape in an isothermal
medium. In the present paper the approach used in [2, 3] is modified to obtain an expression for the flux par-
ticles diffusing to a sphere in a nonisothermal medium with variable transport properties.

From this formula and the previously known theoretical and experimental results, the conclusion is drawn
that in a certain range of variation of probe temperature the saturation ion current to an electric probe in a
chemically frozen plasma depends only slightly on this temperature. By neglecting this dependence and using
the results of {2, 3] we obtained a formula for the saturation current to a probe of arbitrary geometrical shape
in a plasma flux at low Reynolds number.

The "moving probe® method suggested in the experimental work of [4] for diagnosis of a slowly moving
plasma has been confirmed theoretically and developed.

1. Statement of the Problem. We consider flow of a three-component moderately ionized gas (plasma,
consisting of singly charged ions of one type, electrons, and one type of neutrals) about a conducting charged
body (an electric probe), under conditions where the particle mean free path is much less than the character-
istic probe dimension. We shall assume the plasma flow to be in thermodynamic equilibrium (the temperatures
of the electrons and of the heavy particles are the same) and chemically frozen, with heterogeneous reactions
on the probe surface.

We define the dimensionless saturation ion current I; to an electric probe of arbitrary geometric shape
in the form

Ii = -I‘i'/(engaobgnoc["), I? = j' jde", (1 .l)
S

where j‘i’ is the saturation ion current density to the probe; the surface element dS° is directed along the outward
normal to the probe surface S; e, charge on the electron; ng, volume concentration of electrons; DY, binary dif-
fusion coefficient; L, characteristic probe dimension (for a spheric probe we take this to be the probe radius a);
the subscripts i, e, and n refer to ions, electrons, and neutrals, respectively; the subscript « corresponds to
incident stream conditions.

Below, the dimensioned physical quantities, in contrast with the corresponding dimensionless quantities,
will be denoted by the subscript 0.

Substituting into Eq. (1.1) the expression for the saturation ion current density found in [1}, we obtain, in

dimensionless variables

Ii = 4 (0Din)uSh, Sh = — - [ vaas, (1.2)
8
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where p, Djp are the dimensionless density and diffusion coefficient; ¢ = (x, —x)/X,; X, quasineutral molar
concentration of charged particles; Sh, dimensionless Sherwood number, describing the flow of charged par-
ticles to the probe; the subscript w refers to conditions at the probe surface. Here and below we take the length
scale to be the characteristic probe dimension L, while the other quantities are scaled in terms of their values
at infinity (densities, temperatures, transport coefficients, velocities). The quantity pDjy is assumed to be con-
stant at the probe surface because its surface has constant temperature.

The function ¢ is determined the ambipolar diffusion equation [1], which, assuming negligible effect of
thermal diffusion and neglecting the barodiffusion term that is quadratic in the Mach number, has the form,
in dimensionless variables

[]

RewSCepvVE — div (pDaVE) = 0, Ry, = (p 0L ) ’
o p, o0

0 2p? p°
S = [ —F— 0 _ _“TinTen . 9n?
( png )oo9 Da DL’,.—{— D?,, ZDzm
where v is the bulk velocity, referenced to its value at inifinity Vg(; Re and Sc, Reynolds number and the ambi-
polar Schmidt number; u% coefficient of dynamic viscosity.

Assuming the Schmidt number to be constant and a power law for the viscosity, the last equation has the
form

RenpvVE — (1/8¢) div (uVE) =0, p = 17, (1.3)
where T is the temperature.

We assume the probe surface to be perfectly absorbing, perfectly catalytic, andnonemittive, In this case
one can take the quasineutral concentration of charged particles on the wetted surface to be zero [1]. Far from
the probe the ion and electron concentrations tend to their values in the unperturbed plasma. Therefore, the
boundary conditions for the function £ have the form

on the probe surface ¢ =1, far from the probe £ =0. (1.4)

The quantities v, p, T are determined by solving the problem of flow over a body (the probe) of a viscous
thermally conducting gas, without allowing for ionization.

As was mentioned above, the objective of this paper is to determine the form of the function I;(Re,,) for
small values of the argument Re,,. More accurately, we shall seek the first two terms of the expansion of this
function as Re_ — 0.

2. Spherical Probe in a Nonisothermal Plasma. To solve the problem of a spherical probe in a noniso-
thermal slowly moving plasma, besides Egs. (1.3) and (1.4) we require the heat influx equation and the continuity
equation, and also the boundary conditions for the temperature and the bulk velocity.

The heat influx equation [5], neglecting terms on the order of the square of the Mach number, and the
boundary conditions for the temperature have the form
L giv (uVT) = 0, o = o8
RewvaT—a-dlv(p, )= ,U—T,. 2.1)
r=1,T=T4 r-—>o0, T—>1,

where ¢ is the Prandtl number; A’ thermal conductivity; cg, specific heat; and r, radial coordinate. Here it
is assumed that the neutral gas has constant heat capacity and Prandtl number.

Following [2, 3], we shall seek an approximate asymptotic solution of the problem of Egs. (1.3), (1.4), and
(2.1), using the method of matched asymptotic expansions with respect to Reynolds number in the inner 1=
r < O(ReZ!)] and outer [O(ReZl) =r < «| flow regions.

The asymptotic expansions of the solution of the problem have the form:

inner (2.2)
E(r, 0; Rew) = Eo(r, 0) + Reoly(r, 0) + .. o
T(r, 8; Rew) = Ty(r, 8) + ReuT4(r, 0) + ..
outer
&(r, 0; Rew) = Reo3M(r, 0) + .. ., (2.3)
T(r, 8; Rew) = 1 + RewlO(, 0) + . . .,]
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is the compressed radial coordinate

where 6 is the angle between the radius vector r and the direction of the incident stream velocity; r' = r Reg,

We shall postulate that the outer and inner expansions of the bulk velocity have the form
v(r, 6; Re) =1 ..., v(r, 0; Rew) = vo(r, ) 4. . .,
where i is the unit vector in the direction of the incident stream velocity

Substituting the expansion (2.2) for the function ¢ into Eq. (
number in terms of Rew

), we have an expansion of the Sherwood

Sh (Rew) = Shy + RewShy + ..., Shy = — 5= j V&,dS, Shy = — ~ 5 VEdS.

We now find the zeroth-order approximation for the inner expansion of the functions ¢, T, corresponding
to the case of a plasma at rest.

From Egs. (1.3), (1.4), (2.1
following equations and boundary conditions

), and (2.2) for determining ¢, and T, we obtain the
div (uyVT,) = 0, div (p, V&) = 0, po = T5,} (2.4)
r=1,8=1,T,=T,.

In addition, the functions ¢, and T, must satisfy the conditions for matching with the zeroth-order term
of the outer expansion, i.e., should go to 0 and 1 at infinity

The solution of problem (2.4) is

. 1___1-0 Tn+1 {\V/(nt1)
=17, 14 ) .

(2.5)
Now we must find the zeroth-order approximation for the Sherwood number Shj, which describes mass
transfer in the plasma at rest:

- Tn+1
Shy = 273"/ (T), f(Tw)—,,+1 e

(2.6)
We then go on to construct the next approximation for the Sherwood number Sh. We find the functions
£, T(0, To do this we require the asymptote of the functions £, T, at infinity. From Eq. (2.5) it follows
thatasr — =

& = o)fr + 011, ¢, = [(T,,), To =1 + efr 4+ 0(1/r), (2.7
¢ = —(1 — Tu)(Tw).
¥rom Egs. (1.3), (1.4), (2.1), (2.3), and (2.7) we have the following problem for the functions g“) T(‘)
iV IO — (1/6) div' (V' T™) = 0,
iV'ED — (1/Sc) div’ (V'E®) = 0,
P 00, T > 0, B9 = 0; 7' — 0, T® ~ cfr + . . (2.8)
ED ~oefrf 4.,

where V', div' are the corresponding differential operators, allowing for radial compression
The solution of problem (2.8) are the functions

EN = (cy/r') exp [—(1/2) Sc (1 — cos 8)]
T = (ey/r") exp [—(1/2)or'(1 — cos ) 1.

(2.9)
To determine the first term of the inner expansion of the functions £, T from Egs. (1.3), (1.4), (2.1},
(2.2), and (2.9) we have the boundary problem
ve — L g . o, r—lip.
Povo Vo 8o div (V& + 1, VE) = 0, py = nTy™ Ty (2.20)
00voV Ty — (1/6) div (1oV Ty + 1,V7T,) = 0; 2.11)
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r=1,8=071,=0 (2.12)
r— oo, &= — (1/2)¢;S¢ (1 — cos 8), Ty — —(1/2)e,0(1 — cos 9).

From the continuity equation we have the identity

div (pyvy) = 0. (2.13)
We shall also use the boundary condition for the bulk velocity at the body
r=1, v =0. (2.14)

As was mentioned above, the aim of the present analysis is the find expressions for the number Shy. For
convenience in further calculations we shall introduce the dimensionless Nusselt number Nu, describing the
heat flux to the body:

Nu:—;— YVTdS.
J'E,S‘

Substituting Eq. (2.2) for the function T into the last formula, we obtain an expansion of the Nusselt num-
ber in terms of Re,, :

Nu (Rew) = Nug + ReoNuy 4- ..., Nuy= Eiijr,,ds, Ny, = _QLREVTIds.
X S 8

We first find a relation between the numbers Sh; and Nu;. We note that from Eq. (2.4) there follows the
identity g div (p,VE) = div (EokoVE) — peVENVE, = div (EeVE) — div (£,1,VE).

We multiply Eq. (2.10) by £, and with the help of the last identity and the identity (2.13) we transform it
to the form

5 div (Eipovo) — o [0 (B VEy) — div (g VEo) + & div (1,VEg)] = 0. (2.15)

We now consider the sphere Zp of arbifrary radius R > 1 and the volume Vg included between this sphere
and the surface S of the spherical probe. Integrating Eq. (2.15) over the volume VR, using the Ostrogradskii—
Gauss theorem, and then going to the limit R — «, and allowing for the asymptote at infinity, Eqs. (2.7), (2.12)
and the boundary conditions on the body, Eqs. (2.4) and (2.12), we obtain

I—1I,+7 =0,
I, = — [ &, VE,dS = 2nT% Shy;
8

where (2.16)

1, = lim { Eu,VEAE = 2 Sc 2(Tw);
2 R_mzj;‘ 1o ¥ €0 (2.17)

J=lim | & div(u,VE)dv;
R

and the surface element dZ of the sphere Zg is directed along the outward normal. The first term in Eq. (2.15)
makes no contribution to Eq. (2.16), since for any radius R > 1 from Egs. (2.13) and (2.14) we have

§orved® = | opved = — [ pweaS = § div (pyve)a¥ =0 (2.18)
ER Ip S VR
and, therefore,
s- div (Egpovo) av = j. E%bovodz - Sggpovods =& (R) ‘5 PpVodZ = 0. (2.19)
VR 3 5 =R
Thus, from Eq. (2.16) we have
ZnT’,ZShl—ZnScfz(Tw)—FJ:O. (2.20)
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We note that from Egs. (2.4) and (2.5) there follow the identities &, div(u.VT,) = div (EueVT) — wVEVT, =
div (BohoVTh) — div (TypoVEr), YTy =—(1 — T,)VE,.
We multiply Eq. (2.11) by £;, and with the help of the last identities and the identity (2.13) we transform
it to the form
%(1 — T) div (E30,vo) + % [div (o1 VTy)
— div (T VE) — (1 — Tw) & div (1, VE,)] = 0.

Integrating the last equation over the volume VR, using the Ostrogradskii—Gauss theorem, andthen going
to the limit R — », and allowing for the asymptote at infinity (2.7) and (2.12), and the boundary conditions on the
body (2.4) and (2.12), we obtain

(2.21)

I3+I4+(1‘—Tw)v]:01 v (2.22)
where

I = | &, VI,dS = 2070 Nuy;
8

Iy=1lim [ Tp,VEAE = — 2n0 (1 — Ty) /2 (T).
R—+x Z'R
The integral J in Eq. (2.22) appears in Eq. (2.17). The first term in Eq. (2.21) does not contribute to Eq.

(2.22) because of the equality (2.19).
Thus, from Eq. (2.22) we have

2075 Nuy — 26 (1 — T) f2(T0) + (1 — Ty)J =0,
From the last equation and Eq. (2.20) we obtain a relation between the numbers Shy and Nuy:
Shy = (8¢ — 6) 15" /*(Tw) + (1 — Ty) "' Nu,. (2.23)

& is interesting to note that for a Lewis—Semenov number of Le = ¢/Sc =1 from Eq. (2.23) in the first
approximation we obtain the analogy between heat and mass transfer.

We now find the number Nu,;. Using Egs. (2.4) and (2.10), we transform Eq. (2.11) to the form
' 0oV Ty — (1/6) div [V(uyTy)] = 0. : (2.24)
Transforming the last equation with the aid of the identity (2.13), and then integrating it over the volume
V- using the Ostrogradskii—Gauss theorem and going to the limit as R — «, allowing for Eq. (2.18) we obtain

J..— = hi o = i ;
Jw=0, where J, Iliggzj;V(uoTl) dz (2.25)

Jo=[ V(1T dS = | 4 V7.dS + [ T,V1s,d § = 2277 Nu,. (2.26)
R 5 B
From Eq. (2.4) there follows the relation

div(VT5t) =0

and therefore we have the identity

T3 aiv [V (o)l = div [ T84V (u,T)] — VIRV (u, Ty = div [T3HY (4, Ty)] — div [1er VT3],

We multiply Eq. (2.24) by T}f}“, and with the help of the last identity and identity (2.13) we transform it to the
form

1. i .
Tz div (T5+20v,) ——-é- (aiv[ 757V (1, T)] — div [u,7,VT241]} = 0.

Integrating the last equation over the volume VR, using the Ostrogradskii—Gauss theorem, and going
to the limit as R — =, allowing for Egs. (2.4), (2.7), (2.12), and (2.18) we obtain
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Joo = TH = (n 4 1) lim [ TVTdE = 2n(n + 1) 0 (1 — T} P2 (T).
Eliminating the quantity J  from this relation with the help of (2.25), we find that J, = 27(n + Vlo@ -
TH,)
w0
Taking account of Eq. (2.26), we have

Nuy = (n+ 1) oT5" (1 — T5H). (2.27)
Substituting Eq. (2.27) into Eq. (2.23), we obtain
Shy = Se T5™f2 (T'w) + 6 T2 (Tw) (1 — F (Tw)]

fthe function £(Ty,) was defined in Eq. (2.6)].

Thus, we obtain the following expansion of the Sherwood number for small values of the Reynolds number:
Sh = 275" (Tw) + Rew T5"f (Tw) {Sc 7 (Tw) + 0 [1 — [ (Tw)]} + 0 (Rew).

Using the solution that has been found, from Eq. (1.2) we find as the first approximation with respect to
Re,, an expression for the saturation ion current I; to a spheric probe of radius a:

I; = 8af(Tw) + Rewhnf(Ty) {Se/(To) + o[t — f(Tu)1}. (2.28)

The dependence of the saturation current I on the probe surface temperature Ty, for various values of
Reynolds number is illustrated graphically in Fig. 1 for the special case when Sc =1, ¢ = 0.7, 0 =0.7. These
graphs show that the saturation ion current depends weakly on the probe surface temperature. In particular,
for a plasma at rest (Re,, = 0), for a reduction of Ty, from 1 to 0.2, the saturation ion current I; to the spherical
probe is reduced by 31%. .

3. Influence of Probe Surface Temperature on the Saturation Ion Current. Some topics in the theory of
electrical probes in a chemically frozen nonisothermal plasma with variable transport properties were ex-
amined in [6-10]. References [6, 7] considered a spherical probe in a plasma at rest. Spherical and cylindri-
cal electric probes in subsonic plasma flow at large Reynolds number were considered in [8]. In [9] formulas
were given for the saturation ion current density to wall probes in a similarity boundary layer (the boundary
layer on a flat plate, a cone, and in the vicinity of the stagnation point on a blunt body). A spherical electric
probe in hypersonic plasma flow in viscous shock layer flow conditions was examined in [10].

On the basis of the results of the above references, and also of those given in Part 2 of this paper, one can
conclude that in a specific range of variation of probe surface temperature, the theoretical dependence of the
saturation ion current to an electric probe in a chemically frozen plasma on the temperature is weak.

An experimental investigation of the dependence of the volt—ampere characteristics on the probe surface
temperature was made in [11-16]. Probes in subsonic flow of low-temperature weakly ionized plasma with
Re,, ~ 1 were investigated in an experiment [11], and for Re,, 3 100 in [12-16] at atmospheric pressure.

Reference [11] investigated a cylindrical probe of platinum in a plasma of combustion products with sodi-
um additive with temperature T ~ 1900°K, reference [12] investigated a twin probe with electrodes in the
form of flat plates of graphite in an argon plasma with potassium additive with temperature T =3000-4000°K,
and reference [13] investigated a twin probe (circular steel electrodes, flush with the surface of a transversely
washed circular cylinder in the stagnation line region) in a plasma of combustion products with additive of al-
kali metals {(sodium, potassium, cesium) with temperature Tfo ~ 1750°K. References [14, 15] investigated
probes of titanium and zirconium, in the form of a flat plate and a sphere, respectively, in an argon plasma
with Tgo = 2000~4000°K, and reference [16] investigated spherical probes of platinum and steel in a plasma of
combustion products with additive of alkali metals (sodium, cesium) with temperature T ~ 2200°K..

The result of this work is the conclusion that the ion current (within the limits of accuracy of the ex-
periments) is practically independent of the probe surface temperature, if the temperatures does not exceed
a certain value. This value depends on the specific experimental conditions and is ~1200°K for the operating
conditions of [11], ~1800°K for [12], ~600°K for [13], ~1100°K for [14, 15], and ~800°K for [16].

Thus, the theoretical conclusion derived above is supported by the experimental data.
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4, Saturation Current to an Electric Probe of Arbitrary Shape. We now consider subsonic flow of a plas-
ma at low Reynolds number about a probe of arbitrary shape. In view of Part 3 it is sufficient to consider the
case of an isothermal plasma in estimating the saturation current. The corresponding boundary-value problem
of Egs. (1.3) and (1.4) withp =1, p =1 was solved in [2, 3] by the method of matched asymptotic expansions
with respect to Re,. An expansion of Sh with respect to Re,, was obtained in the form

Sh =Shy -+ - ShiScRew +10 (Rew).

Therefore, from Eq. (1.2) we obtain in the first approximation with respect to Re_ an expression for the
saturation ion current I; to a probe of arbitrary geometric shape:

Iy = 4n (Sho + %ShﬁScBem). 4.1)

It can be seen that the quantity Sh, appearing in this relation is connected as follows with the probe ca-
pacity C:

Sh, = 2C/L

(in the Gaussian system of units). I is known that the probe capacity depends only on its geometry; it is either
determined theoretically, or it is measured. In particular, for a spherical probe of radius R we have C =R;
for a probe in the shape of an ellipsoid of rotation with semiaxes ¢ and b (e is the semiaxis of rotation), for a
probe in the form of a slender rod of iength L and radius R, and for a disk-shaped probe of radius R one can
use the theoretical results of [17]:

2__ 2 . 52
C:#__b_, a>b; C:._.._‘{_{).___a_, a<b;

In a-t Ve —3? ]/bz—a2

— arctg T
a— Vaz —? a

L . . 2R
C=—14; =%,

7
21111—{

5. Technique of Probe Diagnostics in a Slowly Moving Plasma, Reference [4] examined experimentally
the problem of probe measurements in a slowly moving plasma, when the Reynolds number of the incident flow
is on the order of a few units. Because of the lack of an adequate theory for these conditions one uses the
®moving probe® technique, in which one can apply static theory [18, 19]. The probe rate of motion is chosen
equal to the plasma flow velocity, and then the probe is considered at rest relative to the plasma. The mea-
surements taken in this way agree well with the theory [18, 19].

The following technique was propesed in [4] for matching the probe and plasma flow velocities. With a
fixed potential the probe was traversed several times through the plasma in the flow direction. The probe
current was measured as a function of its speed of motion. As the probe speed increased from zero to a value
somewhat in excess of the flow velocity, the probe current first decreased to some minimum value, and then
began to increase. It was postulated in [4] that this minimum corresponds to zero relative velocity of the probe
and plagma. The measurements of {4] were taken with a spherical probe.

It follows from Edq. (4.1) that the postulate of [4] is valid not only for a spherical probe, but for a probe
of arbitrary shape. Thus, the moving probe technique described above is confirmed theoretically for a probe
of arbitrary shape.

We shall show that with the aid of this technique one can determine the concentration of charged particles
in the unperturbed flow from the measured saturation ion current without knowing the diffusion coefficient for
ions in the neutral gas.
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From Eqs. (1.1) and (4.1) we have

a (‘_ ! ?) T o

—_dl;g—— 0 = E—Sh%enng .

Voo ™=0

Therefore, from the slope of the dependence of the saturation current il | =-I(i) on the velocity vfo of the in-
cident stream at the minimum current point (v}, = 0) one can determine %he concentration of charged particles

nd., without knowing the diffusion coefficient DJ,.

If one needs to calculate the slight influence of the probe surface temperature Ty on the saturation ion
current, then, in place of the last formula in the case of a spherical probe one must use a relation deriving
from Egs. (1.1) and (2.28):

d(—I? ¢
2012 (T ) aente = —(——’) —M—F(Tlo ( “’),
dv? v?
®  |vee=0 2 =
) a
where v = 49/ 0 is the kinematic viscosity. From the last relation, according to the slope d——-(;olg) and
Ve 0
V=0
the value of the dependence (—Igo) on the velocity IIf;l = —I‘l? at the minimum point v, one can determine the concentration

of charged particles nd,, without knowing the diffusion coefficient D?n- If the values of D%n and vfo are known,
it is convenient to use Egs. (2.28) and (4.1) to find ng_ .
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